
Net Yaroze File Formats

© 1997 Sony Computer Entertainment

Publication date: May 1997

Sony Computer Entertainment America
919 E. Hillsdale Blvd., 2nd Flr
Foster City, CA 94404

Sony Computer Entertainment Europe
Waverley House
7-12 Noel Street
London W1V 4HH, England

The Net Yaroze File Formats manual is supplied pursuant to and subject to the terms of the Sony Computer
Entertainment PlayStation™ License and Development Tools Agreements or the Developer Agreement.

The Net Yaroze File Formats manual is intended for distribution to and use by only Sony Computer
Entertainment licensed Developers and Publishers in accordance with the PlayStation™ License and
Development Tools Agreements or the Developer Agreement.

Unauthorized reproduction, distribution, lending, rental or disclosure to any third party, in whole or in part,
of this book is expressly prohibited by law and by the terms of the Sony Computer Entertainment
PlayStation™ License and Development Tools Agreements or the Developer Agreement.

Ownership of the physical property of the book is retained by and reserved by Sony Computer
Entertainment. Alteration to or deletion, in whole or in part, of the book, its presentation, or its contents is
prohibited.

The information in the Net Yaroze File Formats manual is subject to change without notice. The content of
this book is Confidential Information of Sony Computer Entertainment.

PlayStation and PlayStation logos are trademarks of Sony Computer Entertainment. All other trademarks
are property of their respective owners and/or their licensors.

File Formats

Table of Contents

About this Manual
About this Release v
Relate Documents v
Manual Structure v
Typographic Conventions v
Ordering Information vi

Chapter 1: 3D Graphics 1-1
RSD: Model Data 1-2
TMD: Modeling Data for OS Library 1-10

Chapter 2: 2D Graphics 2-1
TIM: Screen Image Data 2-2

Chapter 3: Sound 3-1
SEQ: PS Sequence Data 3-2
VAG: PS Single Waveform Data 3-3
VAB: PS Sound Source Data 3-3

iv Table of Contents

File Formats

About this Manual v

File Formats

About this Manual

About this Release

This is the first release of the File Formats manual for Net Yaroze. The purpose of this new book is to
provide a single authoritative reference to the PlayStation file formats available for use in Net Yaroze games.

Related Documentation

The following volumes in the Yaroze documentation set contain related information:

Net Yaroze User’s Guide
Net Yaroze Library Reference

Typographic Conventions

Certain Typographic Conventions are used through out this manual to clarify the meaning of the text. The
following details the specific conventions used to represent literals, arguments, keywords, etc.

The following conventions apply to all narrative text outside of the structure and function descriptions.

Convention Meaning

| A revision bar. Indicates that information to the left or right of the bar has been
changed or added since the last release.

courier Indicates literal program code.

Bold Indicates a document, chapter or section title.

The following conventions apply within structure and function descriptions only:

Convention Meaning

Medium Bold Denotes structure or function types and names.

Italic Denotes function arguments and structure members.

{ } Denotes the start and end of the member list in a structure declaration.

vi About this Manual

File Formats

1-1

File Formats

Chapter 1:
3D Graphics

1-2 3D Graphics

File Formats

RSD: Model Data

The RSD format for 3D model data is really a meta file; a collection of separate file formats that are used
together to describe a single 3D model. There are four different types of files:

• RSD file: Describes relationships between PLY/MAT/GRP and texture files.
• PLY file: Describes positional information on vertices of a polygon.
• MAT file: Describes material information on a polygon.
• GRP file: Describes grouping information.

Information on how the data in the separate files is used together is specified by the RSD file. Because
descriptive information is stored in multiple files, it’s possible to have objects using different materials in a
PLY file.

All files are ASCII text files with lines delimited by LF or CR/LF. Any line starting with a “#” is treated as a
comment.

RSD File

The RSD file stores information on combinations of PLY, MAT and GRP files constituting a 3D object. A set
of files is used to describe a single 3D object.

Figure 1–1: RSD File Structure

ID

PLY file specification

MAT file specification

GRP file specification

Texture count specification

Texture file specification

:

:

Sample RSD File Contents

The following gives a simple example of the RSD file.

@RSD940102
PLY=sample.ply
MAT=sample.mat
GRP=sample.grp
NTEX=3
TEX[0]=texture.tim
TEX[1]=texture2.tim
TEX[2]=texture3.tim

3D Graphics 1-3

File Formats

ID
The ID is composed of a character string that indicates the version of the RSD file format, being
"@RSDnnnnnn" (where nnnn is a number). The current version is "@RSD940102".

PLY File
PLY = (File name of PLY).

This is SAMPLE.PLY in the example.

MAT File
MAT = (File name of MAT).

This is SAMPLE.MAT in the example.

GRP File
GRP = (File name of GRP).

This is SAMPLE.GRP in the example.

Texture Count
Specifies the number of textures used.

NTEX = (Number of textures)

This is 3 in the example.

Texture File
Specifies an image data file in the TIM format to be used as the texture, and the same number of texture
files as a value specified by above NTEX. (Note that while there are three in the example there can be as
many as required.) This block does not exist in the RSD file for a model that uses no textures.

TEX[n] = (n-th texture file name)

This is “TEXTURE.TIM”, “TEXTURE2.TIM”, and “TEXTURE3.TIM” in our example. The filename
specifications must follow the appropriate format for the development system being used (MS-DOS, UNIX,
Macintosh, etc.). Because of this, care should be taken when transferring files between platforms.

PLY File

The PLY file stores the positions of the vertices of polygons. The coordinate system for the PLY file is the
same as for the extended library (libgs), with the X axis (forward) representing the right screen, the Y axis
the bottom, and the Z axis the depth.

The direction (obverse or reverse) of a single-faced polygon is determined by the order in which the vertices
are described in a polygon group. The obverse of the polygon is defined as the plane for which the vertices
of a polygon are described clockwise.

Figure 1–2: PLY File Structure

ID

Data length record

Vertex group

Normal group

Polygon group

1-4 3D Graphics

File Formats

Sample PLY File Contents

The following gives a simple example of a PLY file:P

@PLY940102
Number of Items
8 12 12
Vertex
0 0 0
0 0 100
0 100 0
0 100 100
100 0 0
100 0 100
100 100 0
100 100 100
Normal
0.000000E+00 0.000000E+00 -1.000000E+00
0.000000E+00 0.000000E+00 -1.000000E+00
1.000000E+00 0.000000E+00 -0.000000E+00
1.000000E+00 0.000000E+00 0.000000E+00
0.000000E+00 0.000000E+00 1.000000E+00
0.000000E+00 0.000000E+00 1.000000E+00
-1.000000E+00 -0.000000E+00 -0.000000E+00
-1.000000E+00 0.000000E+00 0.000000E+00
-0.000000E+00 1.000000E+00 0.000000E+00
0.000000E+00 1.000000E+00 0.000000E+00
0.000000E+00 -1.000000E+00 0.000000E+00
0.000000E+00 -1.000000E+00 0.000000E+00
Polygon
0 6 2 0 0 0 0 0 0
0 6 0 4 0 1 1 1 0
0 7 6 4 0 2 2 2 0
0 7 4 5 0 3 3 3 0
0 3 7 5 0 4 4 4 0
0 3 5 1 0 5 5 5 0
0 2 3 1 0 6 6 6 0
0 2 1 0 0 7 7 7 0
0 7 3 2 0 8 8 8 0
0 7 2 6 0 9 9 9 0
0 4 0 1 0 10 10 10 0
0 4 1 5 0 11 11 11 0

ID

This is a character string representing the version of a PLY file format, being "@PLYnnnnnn" (where nnnn is
a number). The present version is "@PLY940102".

Data Length Record

Describes the number of data lines for the subsequent three data blocks. Items on each line are delimited
by a tab or space character. In our sample, we specify 8 lines of data for the VERTEX group, and 12 lines
each for the NORMAL and POLYGON groups.

Figure 1–3: PLY File Data Length Record

Number of vert ices Number of normals Number of polygons

Vertex Group

A vertex group is composed of three floating-point values representing coordinates of a vertex. One line
serves one vertex.

3D Graphics 1-5

File Formats

Figure 1–4: Vertex Descriptor for PLY File

x component y component z component

Normal Group

The normal is the direction used to calculate light shading. Thus the normal can be either perpendicular to
a polygon’s flat surface, the ‘flat normal’ (to give flat light shading), as in this example, or perpendicular to
the vertex, the ‘vertex normal’, where three polygons join (giving gouraud shading).

A normal group is composed of three floating-point values representing the components of a normal
vector.

Figure 1–5: Normal Descriptor for PLY File

x component y component z component

Polygon Group

A polygon group is composed of a flag for representing the type of a polygon, and eight parameters
constituting the polygon. The meaning of the parameters varies with the type of polygon specified in the
flag.

Figure 1–6: PLY File Polygon Descriptor

Flag Parameter #1 Parameter #2 . . . Parameter #3

Flag bit configuration

bit 7 (MSB) 0 (LSB)
T
Y
P

Polygon (Triangle or Quadrangle)
The parameter section describes the vertices and normals for the polygon. Each vertex value is an integer
index, numbered from zero, to the proper position of the vertex data within the vertex group. Normal values
are a similar index into the normal group.

For a polygon to be subjected to flat shading, the normal of each vertex has the same value, and the value
of the first vertex is adopted. For a polygon to be subjected to smooth shading gourand, the normal of
each vertex has a different value.

The flag is a hexadecimal integer value (although not prefixed with “0x”, as would be expected) that
specifies the type of polygon. For a triangular polygon, the data for the fourth vertex and normal are
assigned a value of zero. For a quadrangular polygon, the vertices are described in the proper order so that
the first three vertices form a triangle, and the second through fourth vertices form another triangle (i.e. to
subdivide the quad as shown in Figure 2-7).

Figure 1–7: Vertex ordering for quad subdivision

1

43

2

1-6 3D Graphics

File Formats

Figure 1–8: Polygon

Vertex 0 Vertex 1 Vertex 2 Vertex 3 Normal 0 Normal 1 Normal 2 Normal 3Flag

Straight line
The parameter section describes the vertex numbers of two end points.

Figure 1–9: Straight Line

Vertex 0 Vertex 1 Vertex 2 Vertex 3 Normal 0 Normal 1 Normal 2 Normal 3Flag

Sprite
A sprite in model data is rectangular image data located in a 3D space. It can be considered to be a
textured polygon always facing the visual point.

The parameter section describes vertices indicating sprite positions, and the width and height of images
(sprite patterns).

Figure 1–10: Sprite

Vertex 0 WIDTH HEIGHT 0 0 0 0 0Flag

MAT File

The MAT file defines the color and shading for each polygon.

Figure 1–11: MAT File Structure

ID

Number of materials

Material descriptor

:

:

:

Sample MAT File Contents

The following gives a simple example of the MAT file:

MAT940801
Number of Items
10
Materials
0-5 0 F C 255 255 255
6 0 G T 1 10 0 25 71 40 25 0 0
7 0 G T 1 10 30 20 75 40 25 0 0
8 0 G T 1 18 73 30 79 40 25 0 0
9 0 G T 1 12 23 29 77 40 25 0 0
10 0 F T 1 18 13 75 72 40 25 0 0
11 0 F T 0 22 10 24 74 40 25 0 0
12 0 F T 0 30 39 41 79 40 25 0 0

3D Graphics 1-7

File Formats

13 1 F D 0 116 47 118 77 69 46 69 77 30 187 187
14 1 F H 0 69 46 69 77 17 45 15 77 101 210 138 52 211 188 101 210

ID

This is a character string representing the version of a MAT file format, being "@MATnnnnnn" (where nnnn
is a number). The present version is "@MAT940801".

New attributes of colored texture and gradation texture unavailable to the past format (@MAT940102) are
supported in @MAT940801.

Number of Items

Describes the number of subsequent material descriptors (lines).

Material Descriptor

Specifies a polygon and describes material information on the polygon.

Figure 1–12: Material Descriptor

FlagPolygon no. Shading Material
information

Polygon number
This is an index (starting from zero) for a polygon group described in a PLY file. Using a range specification
allows two or more polygons to be described in one line. See Table 2-1.

Table 1–1: Polygon number

Description Polygon of interest

1 1 only
0-5 0 1 2 3 4 5
2,4,6 2 4 6

Flag
This is a hexadecimal integer representing the type of a polygon. The flag is not provided with a prefix of
'0x'. The following gives the meaning of each bit.

Bit 0: Light source calculation mode
0: Light source calculation supported
1: Fixed color

With light source calculation supported, the rendering color is determined by the angle between the
direction of the light source and the surface of the polygon. Note that for fixed color, the color is constant
irrespective of the direction of the light source.

Bit 1: Flag for Back face Culling
0: Single-faced polygon
1: Double-faced polygon

Bit 2: Flag for Semitransparent
0: Opaque
1: Semitransparent

With the flag set at 1, the polygon with no texture is always made to be semitransparent, and the polygon
with texture is made to be semitransparent/opaque/ transparent depending on the STP bit of texture data.

Bits 3 to 5: Rate of semitransparency
000: 50% back + 50% polygon
001: 100% back + 100% polygon
010: 100% back - 100% polygon

1-8 3D Graphics

File Formats

011: 100% back + 25% polygon
1XX: reserved

The current library does not provide the capability to change the semitransparency rate of a polygon with
no texture.

Bits 6 to 7: Reserved (Must be 0)

Shading
This is an ASCII character indicating the shading mode.

“F” = Flat shading (shading is based on the normal for the first vertex of the polygon, as specified in the PLY
file)

“G” = Smooth shading

Material information
The format of the remainder of each line is different dpending on the material type. There are several
different material types. Each is designated by a special type code, as follows:

Table 1–2

Type Meaning

C Colored polygon/straight line, no texture
G Gradient filled polygon/straight line, no texture
T Textured polygon/sprite
D Colored textured polygon
H Gradient (shaded) textured polygon

Figure 1–13: Texture not Supported (Colored Polygon/Straight Line)

RTYPE G B

TYPE: Material type, whose value is "C"
R, G, B: RGB components of polygon color (0 to 255)

Figure 1–14: Texture not Supported (Gradation colored polygon/straight line)

 R0 G0 B0 R1 G1 B1 ... R3 G3 B3TYPE

TYPE: Material type, whose value is "G"
Rn, Gn, Bn: RGB components of the n-th vertex. For a triangular polygon,
 the RGB value of the fourth vertex is 0, 0, 0.

Figure 1–15: Textured Polygon/Sprite

TWO U0 V0 U1 V1 U2 V2 U3 V3TYPE

TYPE: Material type, whose value is "T"
TNO: TIM data file to be used (Texture number described in the RSD file)
Un, Vn: Position of vertex n in the texture space. For a triangular polygon,
 the value (U3, V3) of the fourth vertex is zero.

Figure 1–16: Colored Textured Polygon

TNO U0 V0 U1 V1 U2 V2 U3 V3 R G BTYPE

TYPE: Material type, whose value is "D"
TNO: TIM data file to be used. (Texture number described in the RSD file)

3D Graphics 1-9

File Formats

Un, Vn: Position of vertex n in the texture space. For a triangular polygon, the value (U3, V3) of the
fourth vertex is zero.

R, G, B: RGB components of polygon color (0 to 255)

* The colored textured polygon is used to make the texture of a polygon bright without light source
calculation. This type allows the three-dimensional drawing of a textured object without light source
calculation. It is valid only in the fixed color light source calculation mode.

Figure 1–17: Gradation Textured Polygon

TNO U0 V0 U1 V1 U2 V2 U3 V3TYPE

 G0 B0 R0 G1 B1 ... R3 G3 B3R0

TYPE: Material type, whose value is "H"
TNO: TIM data file to be used. (Texture number described in the RSD file)
Un, Vn: Position of vertex n in the texture space. For a triangular polygon,
 the value (U3, V3) of the fourth vertex is zero.
Rn, Gn, Bn: RGB components of the n-th vertex (N = 0 to 3). For a triangular
 polygon, the RGB value of the fourth vertex is 0, 0, 0.

* The gradation textured polygon is used to provide the same effect as textured smooth shading without
light source calculation. This type is valid only in the fixed color light source calculation mode.

GRP File

A group of polygons in the PLY file can be assigned a name. For example, the polygons used to make up a
steering wheel can be grouped and given the name ‘wheel’.

Thus, a group of polygons can be operated by the material editor, and certain polygons can be accessed
from the program.

Figure 1–18: GRP File Structure

ID

Number of groups

Group descriptor

.

.

.

.

ID

This is a character string representing the version of a GRP file, being "@GRPnnnnnn" (where nnnn is a
number). The current version is "@GRP940102".

Number of Groups

Covers the number of subsequent group descriptors.

Group Descriptor

Defines the configuration of a group. A group descriptor is composed of two or more lines.

1-10 3D Graphics

File Formats

Start line
Figure 1–19: GRP Descriptor (Start line)

 Group name Polygon No. line count Number of polygons

Group name: Name assigned to a group

Polygon No. line count: Number of subsequent lines for polygon No. description

Number of polygons: Number of polygons belonging to a group

Subsequent line (for polygon No. description)
Specifies the numbers of polygons belonging to a group. The value indicates the position of a polygon in
the PLY file. Range specification allows two or more polygons to be described in one line.

Table 1–3

Description Polygon of interest

1 1 only
3-7 3 4 5 6 7
2,4,6 2 4 6

TMD: Modeling Data for OS Library

The TMD format contains 3D modeling data which is compatible with the PlayStation expanded graphics
library (libgs). TMD data is downloaded to memory and may be passed as an argument to functions
provided by LIBGS. TMD files are created using the RSDLINK utility, which reads an RSD file created by the
SCE 3D Graphics Tool or a comparable program.

The data in a TMD file is a set of graphics primitives—polygons, lines, etc.—that make up a 3D object. A
single TMD file can contain data for one or more 3D objects.

Coordinate Values

Coordinate values in the TMD file follow the 3D coordinate space handled by the 3D graphics library. The
positive direction of the X axis represents the right, the Y axis the bottom, and the Z axis the depth. The
spatial coordinate value of each object is a signed 16-bit integer value ranging from -32768 to +32767.

In the 3D object design phase and within the RSD format, the vertex information is stored as a floating point
value. Conversion from RSD into TMD involves converting and scaling vertex values as needed. The scale
used is reflected in the object structure, described later, as the reference value. This value can provide an
index for mapping from object to world coordinates. The current version of LIBGS ignores the scale value.

File Format

TMD files are configured by 4 blocks. They have 3 dimensional object tables, and 3 types of data entities—
PRIMITIVE, VERTEX, and NORMAL—which configure these.

3D Graphics 1-11

File Formats

Figure 1–20: TMD File Format

HEADER

OBJ TABLE SECTION
:

PRIMITIVE SECTION
:

VERTEX SECTION
:

NORMAL SECTION
:

HEADER

The header section is composed of three word (12 bytes) data carrying information on data structure.

Figure 1–21: Structure of Header

ID

FLAGS

NOBJ

ID: Data having 32 bits (one word). Indicates the version of a TMD file. The current version is
0x00000041.

FLAGS: Data having 32 bits (one word). Carries information on TIM data configuration. The least
significant bit is FIXP. The other bits are reserved and their values are all zero. The FIXP bit
indicates whether the pointer value of the OBJECT structure described later is a real address. A
value of one means a real address. A value of zero indicates the offset from the start.

NOBJ: Integral value indicating the number of objects

OBJ TABLE

The OBJ TABLE block is a table of structures holding pointer information indicating where the substance of
each object is stored. Its structure is as shown below.

Figure 1–22: OBJ TABLE structure

OBJECT #1
OBJECT #2

:
:

The object structure has the following configuration:

struct object
{

u_long *vert_top;
u_long n_vert;
u_long *normal top;
u_long n_normal;
u_long *primitive top;
u_long n_primitive;
long scale;

}

(Explanation of members)

vert_top: Start address of a vertex
n_vert: Number of vertices
normal_top: Start address of a normal

1-12 3D Graphics

File Formats

n_normal: Number of normals
primitive_top: Start address of a primitive
n_primitive: Number of primitives

Among the members of the structure, the meanings of the pointer values (vert_top, normal_top,
primitive_top) change according to the value of the FIXP bit in the HEADER section. If the FIXP bit is 1, they
indicate the actual address, and if the FIXP bit is 0, they indicate a relative address taking the top of the
OBJECT block as the 0 address.

The type of the scaling factor is "signed long", and its value raised to the second power is the scale value.
That is to say, if the scaling factor is 0, the scale value is an equimultiple; if the scaling factor is 2, the scale
value is 4; if the scaling factor is -1, the scale value is 1/2. Using this value, it is possible to return to the
scale value at the time of design.

PRIMITIVE

The PRIMITIVE section is an arrangement of the drawing packets of the structural elements (primitives) of
the object. One packet stands for one primitive (see Figure 2-23).

The primitives defined in TMD are different from the drawing primitives handled by libgpu. A TMD primitive
is converted to a drawing primitive by undergoing perspective transformation processing performed by the
libgs functions.

Each packet is of variable length, and its size and structure vary according to the primitive type.

Figure 1–23: Drawing Packet General Structure

mode

packet data
...

flag ilen olen

0(LSB)31(MSB)

Each item in Figure 2-23 is as follows:

Mode (8 bit)
Mode indicates the type of primitive and added attributes. They have the following bit structure:

Figure 1–24: Mode

MSB LSB

CODE OPTION

CODE: 3 bit code expressing entities
001 = Polygon (triangle, quadrilateral)
010 = Straight line
011 = Sprite

OPTION: Varies with the option, bit and CODE values
(Listed with the list of packet data configurations described later)

Flag (8 bit)
Flag indicates option information when rendering and has the following bit configuration:

3D Graphics 1-13

File Formats

Figure 1–25: Flag

MSB LSB

G
R
D

F
C
E

L
G
T

0 0000

GRD: Valid only for the polygon not textured, subjected to light source calculation
1: Gradation polygon
0: Single-color polygon

FCE: 1: Double-faced polygon
0: Single-faced polygon
(Valid, only when the CODE value refers to a polygon.)

LGT: 1: Light source calculation not carried out
0: Light source calculation carried out

Ilen (8 bit)
Indicates the length, in words, of the packet data section.

Olen (8 bit)
Indicates the word length of the 2D drawing primitives that are generated by intermediate processing.

Packet Data
Parameters for verices and normals. Content varies depending on type of primitive. Please refer to “Packet
data configuration” which will be discussed later.

VERTEX

The vertex section is composed of a set of structures representing vertices. The following gives the format
of one structure.

Figure 1–26: Vertex Structure

VXVY

VZ--

MSB LSB

VX, VY, XZ: x, y and z values of vertex coordinates (16-bit integer)

NORMAL

The normal section is composed of a set of structures representing normals. The following gives the format
of one structure.

Figure 1–27: Normal Structure

NXNY

NZ--

MSB LSB

NX, NY, NZ: x, y and z components of a normal (16-bit fixed-point value)

NX, NY and NZ values are signed 16-bit fixed-point values where 4096 is considered to be 1.0.

1-14 3D Graphics

File Formats

Figure 1–28: Fixed-Point Format

14 1112 0

+

/

-

bit 15

Sign: 1 bit

Integral part: 3 bits

Decimal part: 12 bits

Packet Data Composition Table

This section lists packet data configurations for each primitive type.

The following parameters are contained in the packet data section:

Vertex(n):
Index value of 16-bit length pointing to a vertex. Indicates the position of the element from the start of the
vertex section for an object covering the polygon.

Normal(n)
Index value of 16-bit length pointing to a normal. Same as Vertex.

Un, Vn
X and Y coordinate values on the texture source space for each vertex

Rn, Gn, Bn
RGB value representing polygon color being an unsigned 8-bit integer. Without light source calculation, the
predetermined brightness value must be entered.

TSB
Carries information on a texture/sprite pattern.

Figure 1–29: TSB

0 0 0 0

8 7 6 5 4 bit 0

TPAGE

bit15

0 0 0
T
P
F

A
B
R

TPAGE: Texture page number (0 to 31)

ABR: Semitransparency rate (Mixture rate).
Valid, only when ABE is 1.
00 50%back + 50%polygon
01 100%back + 100%polygon
10 100%back - 100%polygon
11 100%back + 25%polygon

TPF: Color mode
00 4 bit
01 8 bit
10 15 bit

CBA: Indicates the position where CLUT is stored in the VRAM.

3D Graphics 1-15

File Formats

Figure 1–30: CBA

31 16

C
L
Y

C
L
X

CLX: Upper six bits of 10 bits of X coordinate value for CLUT on the VRAM

CLY: Nine bits of Y coordinate value for CLUT on the VRAM

Packet Data Configuration Example-3 Vertex Polygon with Light Source Calculation

A 3 vertex polygon with light source calculation is shown below. The mode and flag values in this example
express a one sided polygon with translucency in the OFF state.

Bit Configuration of Mode Value
The mode value bit configuration of the primitive section is as follows:

Figure 1–31: Mode Structure

0 0 1

MSB

1

LSB
Mode value bit configuration

T
M
E

A
B
E

T
G
E

I
I
P

IIP:Shading mode
0: Flat shading
1: Gouraud shading

TME: Texture specification
0: Off
1: On

ABE: Translucency processing
0: Off
1: On

TGE: Brightness calculation at time of texture mapping
0: On
1: Off (Draws texture as is)

Packet Data Configuration
Packet data configuration is as follows:

1-16 3D Graphics

File Formats

Figure 1–32: Packet Data for Polygons

0x20

Vertex0 Normal0

Flat (solid color), No-Texture Gouraud (solid color), No-Texture

0x00

B

0x03

G

0x04

R

Vertex2 Vertex1

0x30

Vertex0 Normal0

0x00

B

0x04

G

0x06

R

Vertex1 Normal1

Vertex2 Normal2

0x20

--

-- B1

Flat (gradation), No-Texture Gouraud (gradation), No-Texture

0x04

B2

G0 R0B0

Vertex0

Vertex2

Normal0

Vertex1

G1 R1

G2 R2
Vertex0

Vertex1

Normal0

Normal1

Vertex2 Normal2

0x24

--

TSB

Flat, Texture Gouraud, Texture

0x00

--

0x05

V0

0x07

U0CBA

Vertex0

Vertex2

Normal0

Vertex1

V1 U1

V2 U2

0x34

--

TSB

0x00

--

0x06

V0

0x09

U0CBA

Vertex0

Vertex1

Normal0

Normal1

V1 U1

V2 U2

Vertex2 Normal2

Note: same value as mode

0x05 0x06 0x30 0x04 0x06 0x06

--

-- B1

B2

G0 R0B0

G1 R1

G2 R2

0x20(Note)

0x30(Note)0x20(Note)

0x30(Note)

In the above example, the values of mode and flag indicate a single-faced polygon and semitransparency
processing not carried out.

Packet Data Configuration Example-Polygon with 3 Vertices and No Light Source Calculation

Bit Configuration of Mode Value
The primitive section mode value bit configuration is shown below. For the value of each bit please refer to
“3 vertex polygon with light source calculation.”

Figure 1–33: Mode Byte

0 0 1

MSB

0

LSB
Mode value bit configuration

T
M
E

A
B
E

T
G
E

I
I
P

3D Graphics 1-17

File Formats

Packet Data Configuration
Packet date configuration will be as follows:

Figure 1–34

0x21

Flat, No Texture Gouraud, No Texture

0x01

Note B

0x03 0x04

Vertex1 Vertex0

-- Vertex2

G R

0x31 0x01

Note B0

0x05 0x06

Vertex1 Vertex0

-- Vertex2

G0 R0

-- B1 G1 R1

-- B2 G2 R2

0x25

Flat, Texture Gouraud, Texture

0x01 0x06 0x07

TSB

--

Vertex0

Vertex2

Vertex1

CBA V0 U0

V1 U1

V2 U2

G R

-- --

-- B

0x35 0x01 0x08 0x09

TSB

--

Vertex0

Vertex2

Vertex1

CBA V0 U0

V1 U1

V2 U2

G0 R0

-- --

-- B0

G1 G1-- B1

G2 G2-- B2

Note: Has same value as mode.

Packet Data Configuration Example-Polygon with 4 Vertices and Light Source Calculation

Bit Configuration of Mode Value
The primitive section mode value bit configuration is shown below. For the value of each bit please refer to
“3 vertex polygon with light source calculation.”

Figure 1–35: Mode Byte

0 0 1

MSB

1

LSB
Mode value bit configuration

T
M
E

A
B
E

T
G
E

I
I
P

Note: Bit 3 is set to 1 to designate a 4-vertex primitive.

1-18 3D Graphics

File Formats

Packet Data Configuration
Packet data configuration is as follows:

Figure 1–36: Mode

0x28

Flat (solid color), No-Texture Gouraud (solid color), No-Texture

0x00

B

0x04 0x05

Vertex0

Vertex2

Normal0

Vertex1

-- Vertex3

G R

0x38 0x00

B

0x05 0x08

Vertex0

Vertex1

Normal0

Normal1

Vertex2 Normal3

Vertex1 Normal2

G R

0x2c

Flat, Texture Gouraud, Texture

0x00

-- --

-- --

0x07 0x09

TSB

CBA

Vertex0 Normal0

Vertex2 Vertex1

-- Vertex3

V0 U0

V1 U1

V2 U2

V3 U3

0x3c 0x00

-- --

-- --

0x08 0x0c

TSB

CBA

Vertex0 Normal0

Vertex1 Normal1

Vertex2 Normal2

Vertex3 Normal3

V0 U0

V1 U1

V2 U2

V3 U3

Note: same value as mode

0x28

Flat, (gradation), No-Texture Gouraud (gradation), No-Texture

0x04

B0

0x07 0x08

G0 R0

0x38 0x04

B0

0x08 0x08

G0 R0

B1-- G1 R1

B2-- G2 R2

B3-- G3 R3

Vertex0

Vertex2

--

Normal0

Vertex1

Vertex3

B1 G1 R1--

B2 G2 R2--

B3 G3 R3--

Vertex0

Vertex1

Vertex2

Normal0

Normal1

Normal2

Vertex3 Normal3

0x28(Note)

0x28(Note) 0x38(Note)

0x38(Note)

Packet data configuration example-Polygon with 4 Vertices and No Light Source Calculation

Bit Configuration of Mode Value
The primitive section mode value bit configuration is shown below. For the value of each bit please refer to
“3 angle polygon with light source calculation.”

Figure 1–37: Mode Byte

0 0 1

MSB

1

LSB
Mode value bit configuration

T
M
E

A
B
E

T
G
E

I
I
P

Note: Bit 3 is set to 1 to designate a 4-vertex primitive.

3D Graphics 1-19

File Formats

Packet Data Configuration
Figure 1–38: Packet Data

0x29

Flat, No Texture Gouraud, No Texture

0x01

Note B

0x03 0x05

Vertex3

Vertex0

Vertex2

Vertex1

G R

0x39 0x01

Note B0

0x06 0x08

Vertex3

Vertex0

Vertex2

Vertex1

G0 R0

-- B1 G1 R1

-- B2 G2 R2

-- B3 G3 R3

0x2d

Flat, Texture Gouraud, Texture

0x01

-- --

-- --

-- B

0x07 0x09

Vertex3

Vertex0

Vertex2

Vertex1

TSB

CBA V0 U0

V1 U1

V2 U2

V3 U3

G R

0x3d 0x01

-- --

-- --

-- B0

0x0a 0x0c

Vertex3

Vertex0

Vertex2

Vertex1

TSB

CBA V0 U0

V1 U1

V2 U2

V3 U3

G0 R0

-- B1 G1 R1

-- B2 G2 R2

-- B3 G3 R3

Note: Has same value as mode.

Packet Data Configuration Example-Straight Line

Bit Configuration of Mode Value
The primitive section mode value bit configuration is as follows:

Figure 1–39: Mode

0 1 0

MSB

0

LSB

0 0

Mode value bit configuration

I
I
P

A
B
E

IIP: With or without gradation
0: Gradation off (Monochrome)
1: Gradation on

ABE: Translucency processing on/off
0: off
1: on

Packet Data Configuration
Figure 1–40: Packet Configuration for “Straight Line”

0x40

Gradation OFF Gradation ON

0x01

B

0x02 0x03

Vertex0Vertex1

G R

0x50 0x01

B0

0x03 0x04

Vertex0Vertex1

G0 R0
-- B1 G1 R1

Note: same value as mode

0x40(Note) 0x50(Note)

1-20 3D Graphics

File Formats

Packet Data Configuration Example - 3 Dimensional Sprite

A 3 dimensional sprite is a sprite with 3-D coordinates and the drawing content is the same as a normal
sprite.

Bit Configuration of Mode Value
The primitive section mode value bit configuration is as follows:

Figure 1–41: Mode

0 1 1

MSB

SIZ

LSB

1 0

Mode value bit configuration

A
B
E

SIZ: Sprite size
00: Free size (Specified by W, H)
01: 1 x 1
10: 8 x 8
11: 16 x 16

ABE: Translucency processing
0: Off
1: On

Packet Data Configuration
Packet data configuration is as follows:

Figure 1–42: Packet Data for Sprites

0x64

Free size 1 x 1

0x01 0x03 0x05

Vertex0

W

CBA

TSB

H

V0 U0

0x6c 0x01 0x02 0x04

Vertex0

CBA

TSB

V0 U0

0x74

8 x 8 16 x 16

0x01 0x02 0x04

Vertex0

CBA

TSB

V0 U0

0x7c 0x01 0x02 0x04

Vertex0

CBA

TSB

V0 U0

File Formats

Chapter 2:
2D Graphics

2-2 2D Graphics

File Formats

TIM: Screen Image Data

The TIM file covers standard images handled by the PlayStation unit, and can be transferred directly to its
VRAM. It can be used commonly as sprite patterns and 3D texture mapping materials.

The following are the image data modes (color counts) handled by the PlayStation unit.

• 4-bit CLUT
• 8-bit CLUT
• 16-bit Direct color
• 24-bit Direct color

The VRAM supported by the PlayStation unit is based on 16 bits. Thus, only 16- and 24-bit data can be
transferred directly to the frame buffer for display. Use as sprite pattern or polygon texture mapping data
allows the selection of any of 4-bit, 8-bit and 16-bit modes.

TIM files have a file header (ID) at the top and consist of several different blocks.

Figure 2–1: TIM File Format

ID

FLAG

CLUT

Pixel data

31(MSB) 0(LSB)

Each data item is a string of 32-bit binary data. The data is Little Endian, so in an item of data containing
several bytes, the bottom byte comes first (holds the lowest address), as shown in Figure 3-2.

Figure 2–2: The order of bytes in a file

File header or address

Byte0

Byte1

Byte2

Byte3

Byte0

Byte1

1Word= Byte3 Byte2 Byte1 Byte0

bit31 (MSB) bit0 (LSB)

:
:

ID

The file ID is composed of one word, having the following bit configuration.

Figure 2–3: Structure of TIM File Header

bit31 16 15 8 7 0 (LSB)

Reserved (All zero) Version No. ID

Bits 0 – 7: ID value is 0x10

Bits 8 – 15: Version number. Value is 0x00

2D Graphics 2-3

File Formats

Flag

Flags are 32-bit data containing information concerning the file structure. The bit configuration is as in
Figure 3-4.

When a single TIM data file contains numerous sprites and texture data, the value of PMODE is 4 (mixed),
since data of multiple types is intermingled.

Figure 2–4: Flag Word

bit 31 5 3 24 0 (LSB)

Reserved (All zero) PMODE

1

C
F

Bits 0 -3 (PMODE): Pixel mode (Bit length)
0: 4-bit CLUT
1: 8-bit CLUT
2: 15-bit direct
3: 24-bit direct
4: Mixed

Bit 4 (CF): Whether there is a CLUT or not
0: No CLUT section
1: Has CLUT section

Other: Reserved

CLUT

The CF flag in the FLAG block specifies whether or not the TIM file has a CLUT block. A CLUT is a color
palette, and is used by image data in 4-bit and 8-bit mode.

As shown in Figure 3-5, the number of bytes in the CLUT (bnum) is at the top of the CLUT block. This is
followed by information on its location in the frame buffer, image size, and the substance of the data.

Figure 2–5: CLUT

bit 31(MSB) bit 0(LSB)

bnum

DY DX

H W

CLUT 1 CLUT 0

:
:

CLUT n CLUT
n-1

bnum Data length of CLUT block. Units: bytes. Includes the 4 bytes of bnum.

DX x coordinate in frame buffer.

DY y coordinate in frame buffer.

H Size of data in vertical direction.

W Size of data in horizontal direction.

CLUT 1~n CLUT entry (16 bits per entry).

In 4-bit mode, one CLUT consists of 16 CLUT entries. In 8-bit mode, one CLUT consists of 256 CLUT
entries.

2-4 2D Graphics

File Formats

In the PlayStation system, CLUTs are located in the frame buffer, so the CLUT block of a TIM file is handled
as a rectangular frame buffer image. In other words, one CLUT entry is equivalent to one pixel in the frame
buffer. In 4-bit mode, one CLUT is handled as an item of rectangular image data with a height of 1 and a
width of 16; in 8-bit mode, it is handled as an item of rectangular image data with a height of 1 and a width
of 256.

One TIM file can hold several CLUTs. In this case, the area in which several CLUTs are combined is placed
in the CLUT block as a single item of image data.

The structure of a CLUT entry (= one color) is as follows:

Figure 2–6: A CLUT entry

B

bit15

G
S
T
P

14

R

10 9 5 4 0 (LSB)

STP Transparency control bit

R Red component (5 bits)

G Green component (5 bits)

B Blue component (5 bits)

The transparency control bit (STP) is valid when data is used as Sprite data or texture data. It controls
whether or not the relevant pixel, in the Sprite or polygon to be drawn, is transparent. If STP is 1, the pixel is
a semitransparent color, and if STP is other than 1, the pixel is a non-transparent color.

R, G and B bits control the color components. If they all have the value 0, and STP is also 0, the pixel will
be a transparent color. If not, it will be a normal color (non-transparent).

These relationships can be represented in a table as follows:

Table 2–1: STP Bit Function in Combination with R, G, B Data

STP/R,G,B Transucent processing on Translucent processing off

0,0,0,0 Transparent Transparent
0,X,X,X Not transparent Not transparent
1,X,X,X Semi-transparent Not transparent
1,0,0,0 Non-transparent black Non-transparent black

Pixel Data

Pixel data is the substance of the image data. The frame buffer of the PlayStation system has a 16-bit
structure, so image data is broken up into 16-bit units. The structure of the pixel data block is as shown
below.

Figure 2–7: Pixel data

bit 31(MSB) bit 0(LSB)

bnum

DY DX

H W

DATA 1 DATA 0

:
:

DATA n DATA n-1

bnum Data length of pixel data. Units: bytes.Includes the 4 bytes of bnum.

2D Graphics 2-5

File Formats

DX Frame buffer x coordinate

DY Frame buffer y coordinate

H Size of data in vertical direction

W Size of data in horizontal direction (in 16-bit units)

DATA 1~n Frame buffer data (16 bits)

The structure of one item of frame buffer data (16 bits) varies according to the image data mode. The
structure for each mode is shown in Figure 3-8.

Care is needed when handling the size of the pixel data within the TIM data. The W value (horizontal width)
in Figure 3-7 is in 16-pixel units, so in 4-bit or 8-bit mode it will be, respectively, 1/4 or 1/2 of the actual
image size. Accordingly, the horizontal width of an image size in 4-bit mode has to be a multiple of 4, and
an image size in 8-bit mode has to be an even number.

Figure 2–8: Frame buffer data (pixel data)

(a) In 4-bit mode

Pix3

bit15

Pix2 Pix1

12 11 8 7 0 (LSB)

Pix0

34

pix 0-3 pixel value (CLUT No.)

The order on the screen is pix0, 1, 2, 3, starting from the left.

(b) In 8-bit mode

bit15 0 (LSB)

pix1 pix0

8 7

pix 0-1 pixel value (CLUT No.)

The order on the screen is pix0, 1, starting from the left.

(c) In 16-bit mode

bit15 0 (LSB)

G R

9 4

B

10 514

S
T
P

STP transparency control bit (see CLUT)

R Red component (5 bits)

G Green component (5 bits)

B Blue component (5 bits)

 (d) In 24-bit mode:

bit15 0 (LSB)

G0

R1

B1

R0

B0

G1

2-6 2D Graphics

File Formats

R0, R1 Red component (8 bits)

G0, G1 Green component (8 bits)

B0, B1 Blue component (8 bits)

In 24-bit mode, 3 items of 16-bit data correspond to 2 pixels’ worth of data. (R0, G0, B0) indicate the pixels
on the left, and (R1, R2, B1) indicate the pixels on the right.

File Formats

Chapter 3:
Sound

3-2 Sound

File Formats

SEQ: PS Sequence Data

SEQ is the PlayStation sequence data format. The typical extension in DOS is “.SEQ”.

Figure 3–1: SEQ Format

ID (SEQp)

Version

Resolution of quarter note

Tempo

End of SEQ

Score data

Byte count

4

4

2

3

2

3

Any

Rhythm

Sound 3-3

File Formats

VAG: PS Single Waveform Data

VAG is the PlayStation single waveform data format for ADPCM-encoded data of sampled sounds, such as
piano sounds, explosions, and music. The typical extension in DOS is “.VAG”.

Figure 3–2: VAG Format

ID (VAGp)

Version

Reserved

Data size (Bytes)

Sampling frequency

Reserved

Waveform data

4

4

4

4

4

12

Byte count

16

�@Any

Name

VAB: PS Sound Source Data

The VAB file format is designed to manage multiple VAG files as a single group. It is a sound processing
format that is handled as a single file at runtime.

A VAB file contains all of the sounds, sound effects, and other sound-related data actually used in a scene.
Hierarchical management is used to support multitimbral (multisampling) functions.

Each VAB file may contain up to 128 programs. Each of these programs can contain up to 16 tone lists.
Also, each VAB file can contain up to 254 VAG files.

Since it is possible for multiple tone lists to reference the same waveform, users are able to set different
playback parameters for the same waveform, thus giving the same waveform different sounds.

3-4 Sound

File Formats

Organization

A VAB format file is organized as follows:

Figure 3–3: VAB Format

ID (VABp)

Version

Waveform size

System reserved

Bank attribute 1 (user defined)

Byte count

4

4

4

4

2

1

2Number of programs

VAB ID

Number of tones 2

2

System reserved

Program attribute table

1

4

16 x 128 (Max programs)*

32 x 16 (Max tones) x number of programs**Tone attribute table

Bank attribute 2 (user defined)

VAG offset table 512

Any (Up to 516,096)

VAB
header
(.VH)

VAG count

Master volume

Master pan

VAG (0)

VAG (1)

VAG (VAG count)

.

.

.

VAB
body
(.VB)

1

1

* See (b) in Structure

** See (c) in Structure

Structure

The structure of a VAB header is as follows. It is possible to set each attribute dynamically using this
structure at the time of execution.

(a) VabHdr structure is contained within the first 32 bytes (See libsnd in the Library Reference for details.).
(b) ProgAtr structure for 128 programs is contained in the program attribute table (See libsnd in the Library

Reference for details.).
(c) VagAtr structure for each tone is contained in the tone attribute table (See libsnd in the Library

Reference for details.).
(d) VAG offset table contains 3-bit right-shifted VAG data size stored in short (16 bit). For example:

Sound 3-5

File Formats

Table 3–1

VAG# 0 1 2 . . .

VAG offset table 0x1000 0x0800 0x0200 . . .
Actual size 0x8000 0x4000 0x1000 . . .
Offset 0x8000 0xc000 0xd000 . . .

3-6 Sound

File Formats

